2019年12月11日星期三

Interface characteristics and electrical transport of Ge/Si heterojunction fabricated by low-temperature wafer bonding

We report a promising method for oxide-layer-free germanium (Ge)/silicon (Si) wafer bonding based on an amorphous Ge (a-Ge) intermediate layer between Si and Ge wafers. The effect of the exposure time (t e), during which the a-Ge is exposed to the air after sputtering and being taken out of the chamber on the bubble density at the bonded interface, is identified and a near-bubble-free Ge/Si bonded interface is achieved for the t e of 3 s. The crystallization of a-Ge at Ge/Si bonded interface starts from a-Ge/Ge interface and it fully turns to be single-crystal Ge after post-annealing. The oxide layer at a-Ge/a-Ge bonded interface formed by the interface hydrophilic reaction disappears due to the atom redistribution triggered by the crystallization of a-Ge. As expected, the performance of the Ge/Si heterojunction diode is significantly improved by this oxide-layer-free Ge/Si bonded interface. A low dark current of 1.6 µA, high on/off current ratio of 3.4  ×  105, and low ideality factor of 1.02 (150 K) is achieved at  −0.5 V for the bonded Ge/Si diode. Finally, the carrier transport mechanisms at Ge/Si bonded interface annealed at different temperatures are also clearly clarified.

Source:IOPscience
For more information, please visit our website:  www.semiconductorwafers.net,
send us email at sales@powerwaywafer.com and powerwaymaterial@gmail.com

没有评论:

发表评论