2020年3月23日星期一

Double intermediate bonding layers for the fabrication of high-quality silicon-on-insulator-based exfoliated Ge film with excellent high-temperature characteristics

We investigate the high-temperature characteristics of wafer-bonded silicon-on-insulator (SOI)-based Ge film with two different intermediate bonding layers. For an amorphous Ge (a-Ge) bonding layer, due to the crystallization of a-Ge, many gas bubbles appear at the bonded interface to form Ge pits on the SOI. When the wafer pairs are annealed at  ≥400 °C, new gas bubbles appear and merge, leading to cracking of the Ge film due to the fact that the new gas bubbles cannot be transferred sufficiently rapidly out of the bonded interface of two single-crystal materials. For an a-Ge/a-Si bonding layer, the porous a-Si can serve as a reservoir at the bonded interface to absorb the by-products. With increase in a-Si layer thickness, the gas bubble density decreases. New gas bubbles are not observed after annealing at 500 °C when a 30 nm thick a-Si layer is introduced. More importantly, the quality of the Ge film with an a-Ge/a-Si bonding layer significantly improves after post-annealing. This can be explained by the repair of the point defects and restraining of the nucleation of threading dislocations by a-Si (no crystal orientation). This work presents high-quality heterogeneous hybrid integration of photoelectric materials by wafer bonding, which may give guidance for the low-temperature integration of Ge/Si, GeSn/Si and III–V/Si.

Source:IOPscience

For more information, please visit our website: https://www.powerwaywafer.com,
send us email at sales@powerwaywafer.com and powerwaymaterial@gmail.com

没有评论:

发表评论