2017年7月26日星期三

Imec demonstrates 50GHz Ge waveguide electro-absorption modulator

Imec demonstrates 50GHz Ge waveguide electro-absorption modulator
At this week's OFC 2015, the largest global conference and exposition for optical communications, nanoelectronics research center imec, its associated lab at Ghent University (Intec), and Stanford University have demonstrated a compact germanium (Ge) waveguide electro-absorption modulator (EAM) with a modulation bandwidth beyond 50GHz. Combining state-of-the-art extinction ratio and low insertion loss with an ultra-low capacitance of just 10fF, the demonstrated EAM marks an important milestone for the realization of next-generation silicon integrated optical interconnects at 50Gb/s and beyond.

Future chip-level optical interconnects require integrated optical modulators with stringent requirements for modulation efficiency and bandwidth, as well as for footprint and thermal robustness. In the presented work, imec and its partners have improved the state-of-the-art for Ge EAMs on Si, realizing higher modulation speed, higher modulation efficiency and lower capacitance. This was obtained by fully leveraging the strong confinement of the optical and electrical fields in the Ge waveguides, as enabled in imec's 200mm Silicon Photonics platform. The EAM was implemented along with various Si waveguide devices, highly efficient grating couplers, various active Si devices, and high speed Ge photodetectors, paving the way to industrial adoption of optical transceivers based on this device.

"This achievement is a milestone for realizing  optical transceivers for datacom applications at 50Gb/s and beyond," stated Joris Van Campenhout, program director at imec. "We have developed a modulator that addresses the bandwidth and density requirements for future ."

Companies can benefit from imec's Silicon Photonics platform (iSiPP25G) through established standard cells, or by exploring the functionality of their own designs in Multi-Project Wafer (MPW) runs. The iSiPP25G technology is available via ICLink services and MOSIS, a provider of low-cost prototyping and small volume production services for custom ICs.

2017年7月17日星期一

Imec demonstrates 50GHz Ge waveguide electro-absorption modulator

At this week's OFC 2015, the largest global conference and exposition for optical communications, nanoelectronics research center imec, its associated lab at Ghent University (Intec), and Stanford University have demonstrated a compact germanium (Ge) waveguide electro-absorption modulator (EAM) with a modulation bandwidth beyond 50GHz. Combining state-of-the-art extinction ratio and low insertion loss with an ultra-low capacitance of just 10fF, the demonstrated EAM marks an important milestone for the realization of next-generation silicon integrated optical interconnects at 50Gb/s and beyond.
Future chip-level optical interconnects require integrated optical modulators with stringent requirements for modulation efficiency and bandwidth, as well as for footprint and thermal robustness. In the presented work, imec and its partners have improved the state-of-the-art for Ge EAMs on Si, realizing higher modulation speed, higher modulation efficiency and lower capacitance. This was obtained by fully leveraging the strong confinement of the optical and electrical fields in the Ge waveguides, as enabled in imec's 200mm Silicon Photonics platform. The EAM was implemented along with various Si waveguide devices, highly efficient grating couplers, various active Si devices, and high speed Ge photodetectors, paving the way to industrial adoption of optical transceivers based on this device.
"This achievement is a milestone for realizing  optical transceivers for datacom applications at 50Gb/s and beyond," stated Joris Van Campenhout, program director at imec. "We have developed a modulator that addresses the bandwidth and density requirements for future ."
Companies can benefit from imec's Silicon Photonics platform (iSiPP25G) through established standard cells, or by exploring the functionality of their own designs in Multi-Project Wafer (MPW) runs. The iSiPP25G technology is available via ICLink services and MOSIS, a provider of low-cost prototyping and small volume production services for custom ICs.

2017年7月9日星期日

Geiger mode theoretical study of a wafer-bonded Ge on Si single-photon avalanche photodiode

Abstract

The investigation of the single-photon properties of a wafer-bonded Ge/Si single-photon avalanche photodiode (SPAD) is theoretically conducted. We focus on the effect of the natural GeO2 layer (hydrophilic reaction) at the Ge/Si wafer-bonded interface on dark count characteristics and single-photon response. It is found that the wafer-bonded Ge/Si SPAD exhibits very low dark current at 250 K due to the absence of threading dislocation (TD) in the Ge layer. Owing to the increase of the unit-gain bias applied on the SPAD, the primary dark current (I DM) increases with the increase in GeO2thickness. Furthermore, the dependence of the linear-mode gain and 3 dB bandwidth (BW) for the dark count on GeO2 thickness is also presented. It is observed that the dark count probability of the Ge/Si SPAD significantly increases with the increase in GeO2 thickness due to the increase of the IDM and the reduction of the 3 dB BW. It is also found that with the increase in GeO2 thickness, the external quantum efficiency, which affects the single-photon detection efficiency (SPDE), drastically decreases because of the blocking effect of the GeO2 layer and the serious recombination at the wafer-bonded Ge/Si interface. The afterpulsing probability (AP) shows an abnormal behavior with GeO2 thickness. This results from the decrease in avalanche charge and increase in effective transit time.
Keywords:GeO2thickness,single-photon avalanche photodiode (SPAD),
Source:  Iopscience
For more information, please visit our website: www.powerwaywafer.com and send us email at: sales@powerwaywafer.com or sales@powerwaymaterial.com

2017年7月7日星期五

Fabrication of high quality, thin Ge-on-insulator layers by direct wafer-bonding for nanostructured thermoelectric devices

Abstract

A simple means of fabricating thin Ge-on-insulator (GOI) layers with a strong bond at the Ge/SiO2interface through direct wafer-bonding is described. In this work, high quality Ge/SiO2 bonding was achieved under ambient air and at room temperature as a result of the extremely hydrophilic bonding surfaces obtained by chemical treatment prior to direct bonding. Based on the results of this work, the first-ever bonding mechanism between ammonium hydroxide treated Ge and SiO2/Si wafer surfaces is proposed. In addition, strain generated during post-annealing as a consequence of the significant thermal-expansion mismatch between Ge and SiO2 was gradually relieved by applying a multistep-cooling process. Structural characteristics of the thin GOI layer were analyzed by cross-sectional scanning electron microscopy, Raman spectroscopy, x-ray diffraction and transmission electron microscopy. It was determined that direct wafer-bonding followed by polishing could produce a GOI layer as thin as 156 nm, with sub-nm surface roughness.
Keywords:Ge-on-insulator (GOI) ,Ge/SiO2,
Source:  Iopscience
For more information, please visit our website: www.powerwaywafer.com and send us email at: sales@powerwaywafer.com or sales@powerwaymaterial.com